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bDual C-P Institute of High Energy Physics,

Bernal Dı́az del Castillo 340, Colima, Colima, México
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1. Introduction

What is the nature of the spontaneous symmetry breaking (SSB) of the Standard Model

(SM)? Assuming that SSB is due to the vacuum expectation value (VEV) of some Higgs

field, it goes without saying that one of the most − if not the most − important question

that the Large Hadron Collider (LHC) could help us answer regards to the nature of the

Higgs mechanism: Is it just one Higgs doublet as in the minimal SM? or is it a complex

system involving more than one Higgs doublet and perhaps even Higgs triplets? If one

Higgs doublet is sufficient to provide the right kind of SSB for the minimal SM, why would

one need to invoke a more complicated structure? How well motivated would or should it

be? The possible presence of a Higgs content that includes triplets promises to yield a rich

“zoo” of electroweak (EW) scalars to be probed at the LHC and ILC.

Although the possibility of having Higgs triplets that obey the quintessential elec-

troweak requirement ρ = 1 has been studied in detail by [1, 2], the question that always

remained is: Why does one need it? In the absence of a direct sign on the nature of the

Higgs mechanism, it is certainly fair to contemplate general scenarios as long as they satisfy

the electroweak precision data constraints. However, it would be more appealing if there

were additional motivations for the use of richer structures such as Higgs triplets. Recently,

a model has been proposed [3] in which the right-handed neutrinos that participate in the

seesaw mechanism are active in the sense that they are electroweak nonsinglets. As such,

if they are not too heavy, they can be produced at colliders with electroweak production

cross sections and characteristic signals such as like-sign dileptons. The seesaw mechanism

can be tested directly at colliders! In fact, the right-handed neutrinos of [3] are members
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Additional fields SU(2)W U(1)Y

LM
R =

(

νR eMR
)

2 −1

χ̃ =
(

χ0 χ+ χ++
)T

3 2

ξ =
(

ξ+ ξ0 ξ+
)T

3 0

eML 1 −2

φS 1 0

Table 1: Additional field content of the model with their transformation properties under SU(2)W

and U(1)Y .

of SM doublets of mirror leptons and their Majorana masses are intrinsically linked to

the electroweak scale through a coupling with a Higgs triplet that develops an electroweak

scale VEV. In this model, the sources of the SM SSB are not only Higgs doublet(s) but

include Higgs triplets as well: the nature of the SM SSB is intimately linked to the nature

of neutrino masses and the possible experimental discovery of the seesaw mechanism at

colliders. One cannot fail but to notice the interesting complementarity of a discovery of

electroweak scale νR’s and that of a Higgs triplet.

In this paper we explore the phenomenology of the model in [3]. The full description

of the scalar sector involving the triplet fields can be found in [1, 4 – 6], here we briefly

review the extension of the basic model to include electroweak neutrinos.

In addition to the SM particle content the model of [3] contains the additional fields

shown in table 1. There is also an additional global U(1)M symmetry under which

LM
R , e

M
L → eiθMLM

R , e
M
L ; χ̃→ e−2iθM χ̃, φS → e−iθMφS , (1.1)

and all other fields are singlets. This global symmetry was invoked in order to avoid certain

terms as indicated below and was explained in detail in [3]. It turns out, however, that

when this model is embedded into a Pati-Salam-like quark-lepton unification [7], this global

symmetry is no longer needed since the absence of the aforementioned terms is guaranteed

by the gauge symmetry of the extended model.

We now briefly comment on the virtues of these assignments: Note that since νR is

not an SU(2)L singlet, it does not couple to L̄LΦ̃. Instead, the Dirac neutrino mass comes

from the term

LS = −gslL̄LφSL
M
R + h.c. (1.2)

which leads to MD
ν = gslvS , where 〈φS〉 = vS and thus the neutrino Dirac mass is indepen-

dent of the EW scale [3]. Notice that φS is a singlet Higgs field.

Active right-handed neutrinos must have a mass > MZ/2 in order not to contribute

to the Z width. This is accomplished with the Y = 2 triplet χ̃ through the term

gMLM,T
R σ2τ2χ̃L

M
R , (1.3)

which leads to

MR = gMvM , (1.4)
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with 〈χ0〉 = vM and where vM = O(ΛEW ). This allows to have EW-scale masses for

the right-handed neutrinos without having to fine-tune the Yukawa coupling gM to be

abnormally small [3].

An important observation is that the U(1)M symmetry was introduced [3] in order to

forbid the terms gLL
T
Lσ2τ2χ̃LL and LT

Lσ2τ2χ̃L
M
R at tree level. A similar result is obtained in

an extension of that model [7] where the global U(1)M is not needed for that purpose. The

main consequence of this is that the Dirac mass for the neutrinos comes from vS exclusively

and the Majorana mass, ML, for the left-handed neutrinos arises at the one-loop level and

can be much smaller than MR.

Taking all of this into consideration one obtains the following Majorana mass matrix:

M =

(

ML mD
ν

mD
ν MR

)

, (1.5)

where, as we have just mentioned above, ML ∼ ǫ(mD
ν )2/MR < 10−2(mD

ν )2/MR.

We are interested in the scenario where gsl ∼ O(gM ) and vM >> vS . In this case,

the eigenvalues of M become −(g2
sl/gM )(vS/vM )vS(1 − ǫ) and MR, where ǫ < 10−2. Now,

since vM ∼ ΛEW , and using the bound mν ≤ 1 eV, we have [3]

vS ≈
√

(1eV) × vM ∼ O(105−6eV) . (1.6)

So far the Y = 0 triplet has not played a role since it does not couple to fermions.

However, it has been introduced in order to ensure ρ = 1 at tree level [1]. Note that in

principle the parameter gsl is constrained by the neutrino mass spectrum. We work under

the premise that the smallness of the Dirac mass is a result of vS and not from a very small

coupling. Thus, if gsl ∼ O(1), then vS ∼ 105 eV. This amounts to a hierarchy among the

scales vS/ΛEW ∼ 10−6 which is however not as severe as the usual hierarchies in GUTS.

This has been discussed in full detail in [3, 8].

2. Scalar sector

The kinetic part of the Higgs Lagrangian is

Lkin =
1

2
Tr[(DµΦ)†(DµΦ)] +

1

2
Tr[(Dµχ)†(Dµχ)] + |∂µφS |2 , (2.1)

where

χ =







χ0 ξ+ χ++

χ− ξ0 χ+

χ−− ξ− χ0∗






, (2.2)

DµΦ = ∂µ + ig(W · τ/2)Φ − ig′ΦBτ3/2 (2.3)

Dµχ = ∂µχ+ igW · tχ− ig′χBt3 . (2.4)

As mentioned above, we work under the premise that the hierarchy in neutrino masses

comes from the VEV of φS . This amounts to vS ∼ 105 eV and in turn to a negligible

mixing between φS and the other scalars. In what follows we neglect such mixing.
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The potential (for Φ and χ) to be considered is [1]

V (Φ, χ) = λ1(TrΦ
†Φ − v2

2)
2 + λ2(Trχ

†χ− 3v2
M )2

+λ3(TrΦ
†Φ − v2

2 + Trχ†χ− 3v2
M )2

+λ4(TrΦ
†ΦTrχ†χ− 2TrΦ†T iΦT j · Trχ†T iχT j)

+λ5[3Trχ
†χχ†χ− (Trχ†χ)2] . (2.5)

Note that this potential is invariant under χ → −χ. In order for the potential to

be positive semidefinite the following conditions must be imposed: λ1 + λ2 + 2λ3 > 0,

λ1λ2 + λ1λ3 + λ2λ3 > 0, λ4 > 0, λ5 > 0. Furthermore the potential is invariant under the

global symmetry SU(2)L× SU(2)R.

When χ gets a VEV 〈χ〉 = diag(vM , vM , vM ) it breaks the global symmetry SU(2)L×
SU(2)R down to the custodial SU(2)C . It was shown in [1, 2] that the structure of the VEV

is dictated by the proper vacuum alignment. Now, using 〈Φ〉 = v2/
√

2, the W and Z masses

can be obtained from Eq. (2.1) and are given by MW = gv/2 and MZ = MW/ cos θW , with

v2 = v2
2 + 8v2

M , (2.6)

with v ≈ 246GeV. This gives rise to ρ = 1 at tree level.

A convenient parametrization can be made by defining cos θH = cH ≡ v2/v and thus

sin θH = sH ≡ 2
√

2vM/v. Using these parameters we can see that tan θH = tH character-

izes the amount of the W mass coming from either the doublet or the triplet scalars.

One of the important questions that arises in the model of [3] is the relative magnitude

of vM compared with the electroweak scale v ∼ 246GeV. The reason we are interested in

this VEV is because the right-handed neutrino Majorana mass is MR = gMvM as shown

in Eq. (1.4) and its search through characteristic signals such as like-sign dilepton events

depends crucially on the knowledge of MR. As we will see below, the constraints coming

from the scalar sector limit the range of allowed values of sin θH = sH ≡ 2
√

2vM/v, and,

consequently, vM . One cannot fail but to see the deep relationship between the search for

the extended Higgs sector and that for the electroweak-scale active right-handed neutrinos.

We will use the subsidiary fields:

φ0 ≡ 1√
2

(

v2 + φ0r + iφ0i
)

, χ0 ≡ vM +
1√
2

(

χ0r + iχ0i
)

,

ψ± ≡ 1√
2

(

χ± + ξ±
)

, ζ± ≡ 1√
2

(

χ± − ξ±
)

(2.7)

for the complex neutral and charged fields, respectively.

The Goldstone bosons are given by

G±
3 = cHφ

± + sHψ
±, G0

3 = i
(

−cHφ0i + sHχ
0i
)

. (2.8)

If the potential preserves the SU(2)C then the fields get arranged in the following

manner (based on their transformation properties under the custodial SU(2)):

five − plet → H±±
5 , H±

5 , H
0
5 ↔ degenerate (2.9)

three − plet → H±
3 , H

0
3 ↔ degenerate (2.10)

2 − singlets → H0
1 , H

0′
1 ↔ Only these can mix , (2.11)
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where

H++
5 = χ++, H+

5 = ζ+, H+
3 = cHψ

+ − sHφ
+ ,

H0
5 =

1√
6

(

2ξ0 −
√

2χ0r
)

, H0
3 = i

(

cHχ
0i + sHφ

0i
)

,

H0
1 = φ0r,

H0′
1 =

1√
3

(√
2χ0r + ξ0

)

, (2.12)

with H−−
5 = (H++

5 )∗, H−
5 = −(H+

5 )∗, H−
3 = −(H+

3 )∗, and H0
3 = −(H0

3 )∗. It is also

convenient to express the triplet neutral scalar χ0 in terms of the above states, namely

χ0 ≡ vM +
1√
3
H0′

1 − 1√
6
H0

5 +
1√
2 cH

H0
3 , (2.13)

where only physical states have been included. Feynman rules for vector boson couplings

can be found in [5].

One last comment regarding the scalar potential. As discussed in [1] the potential

contains an explicit breaking of the U(1)M symmetry. This renders the model free of NG

bosons and the φS mass is independent of vS . Furthermore there is a would-be-Majoron

with a mass larger than the Z boson mass.

3. Couplings to matter

In the search for the Higgs scalars discussed in this work, it is important to know what

those scalars couple to. The couplings of this extended Higgs sector can be found in [2].

Here we are interested in those couplings which are specific to the model of mirror fermions

of [3]. As we shall see below, they can give rise to very specific signatures such as lepton-

number violating decays. In this section we obtain the Feynman rules for scalar fermion

couplings including the mirror fermions.

In the case of SM fermions, we have the usual Yukawa interactions

LY = −hijΨ̄LiΦΨRj + h.c. (3.1)

The Feynman rules obtained from this Lagrangian become [5]

gH0
1
qq̄ = −i mq g

2 mW cH
(q = t, b)

gH0
3
tt̄ = i

mt g sH

2 mW cH
γ5,

gH0
3
bb̄ = −i mb g sH

2 mW cH
γ5, (3.2)

gH−

3
tb̄ = i

g sH

2
√

2 mW cH
(mt(1 + γ5) −mb(1 − γ5)) ,

where third generation notation is used for quarks and similar expressions apply to leptons.

For mirror fermions we need to consider the terms

LM1 = −gM
l L̄M

R ΦeML + h.c. (3.3)

– 5 –
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and

LM2 = −gML
M,T
R σ2τ2χ̃L

M
R . (3.4)

This leads to the following Feynman rules: from Eq. (3.3) one obtains

gH+

3
νl l̄M

= i
mM

l g sH

2
√

2 mW cH
(1 − γ5),

gH0
1
lM l̄M = −i mM

l g

2
√

2 mW cH
, (3.5)

gH0
3
lM l̄M = i

mM
l g sH

2
√

2 mW cH
γ5,

where

mM
l = gM

l

v2√
2

=

√
2 mw cH gM

l

g
, (3.6)

and from Eq. (3.4) we get

gH0′
1

νRνR
= i

gMσ2 ⊗ (1 + γ5)

2
√

3
,

gH0
5
νRνR

= −igMσ2 ⊗ (1 + γ5)√
6

,

gH0
3
νRνR

= i
gMσ2 ⊗ (1 + γ5)√

2 cH
, (3.7)

gH+

5
νReM,+ = i

gMσ2 ⊗ (1 + γ5)√
2

,

gH+

3
νReM,+ = i

gMσ2 ⊗ (1 + γ5)√
2 cH

.

There are also couplings of SM leptons with their mirrors through the term in

Eq. (1.2), i.e.

gνlν̄lφ
r
S

= −i gsl√
2
, gνlν̄lφ

i
S

=
gsl√

2
γ5,

gll̄M φr
S

= −i gsl

2
√

2
(1 − γ5), gll̄Mφi

S
=

gsl

2
√

2
(1 − γ5), (3.8)

where we have used the definition φS = vS + 1√
2
(φr

S + iφi
S).

A detailed and complete study of the lepton sector of this model has been presented

in [8]. In this paper we concentrate on the scalar sector phenomenology specific to this

model.

4. Numerical analysis

4.1 Scalar sector

In this section we explore the parameter space of the model. We begin by studying the

scalar mass spectrum.
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The first observation is that the value of sin θH has an upper bound coming from

from the constraint [9] tan θH ≤ 2. It also has a lower bound coming from the right-

handed neutrino mass scale, i.e. MR > mZ/2. Since MR = gM vM , this translates into

gM vM < 45.6GeV. The lower bound on sin θH comes from finding the lowest allowable

value for vM . If one uses the simple-minded perturbative requirement g2
M/4π < 1, one

obtains vM > 12.9GeV. Thus we restrict our study to the range

0.15 ≤ sin θH ≤ 0.89 . (4.1)

Equivalently, Eq. (4.1) can be expressed in terms of the bounds on vM and v2 namely

12.9GeV < vM < 77.4GeV , (4.2)

243.3GeV > v2 > 112.2GeV . (4.3)

As we have mentioned above, the restrictions on sin θH and consequently on vM , have

interesting consequences on the mass range of the electroweak-scale active right-handed

neutrinos.

We now consider the parameters in Eq. (2.5) and explore two general possibilities:

Either there is no hierarchy among the parameters and treat them on equal footing, or

we assume that all parameters involving triplet fields (including those which mix triplet

and doublet fields) are suppressed with respect to those that involve only doublet fields.

Furthermore whenever a parameter is not suppressed it is assumed to be of order one and

by this we mean that the parameter is arbitrarily chosen to be in the range (0.5 − 2).

Bounds from unitarity [10] are incorporated through the following relations:

mH3 ≤ 400 GeV , (4.4)

mχ ≤
√

3 mH3 , (4.5)

mlight ≤ 270 GeV , (4.6)

where mlight stands for the lightest scalar state. There is also a bound in the mH0
1
−mH0′

1

plane due to unitarity. It amounts to require the heavier of the two to be less than

(700 − 550)GeV when the lighter is in the range of (0 − 300)GeV.

Lastly we incorporate the 115GeV LEP lower bound on the lightest scalar mass,

however we also contemplate the possibility described in [11] that the lightest Higgs might

have escaped detection and could be very light indeed.

We proceed by analyzing some specific cases. Figure 1 shows the situation when there

is no hierarchy among the parameters in the scalar potential. They are all of O(1) and

taken to be in the lower part of the arbitrarily chosen O(1) range. It can be seen from the

figure that in this case the allowed range for sin θH is 0.3 < sin θH < 0.65 where the lower

number refers to the LEP bound while the larger number refers to the unitarity constraint

on the mass of the lightest neutral scalar.

Figure 2 shows a similar case with no hierarchy but with all parameters in the upper

part of the O(1) range. Here the allowed range is shifted downward compared with the

previous bounds, namely 0.17 < sin θH < 0.35.
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H3

LEP bound

Unitarity upper bound on mh0

Figure 1: Scalar mass spectrum for the case where there are no hierarchies among the parameters

in the scalar potential. All parameters are in the lower side of the arbitrarily chosen O(1) range.

We explicitly show the upper unitarity bound on the lightest scalar mh0
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h0

Figure 2: Scalar mass spectrum for the case where there are no hierarchies among the parameters

in the scalar potential. All parameters are in the upper side of the arbitrarily chosen O(1) range.

The same situation occurs for the case of intermediate values with no hierarchy as can

be seen in figure 3 where now one has 0.22 < sin θH < 0.48. Thus, if all parameters in the

potential are taken of the same order, i.e. no hierarchy, then the allowed range for sin θH

decreases as those parameters go from ∼ 0.5 to ∼ 2.
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Figure 3: Scalar mass spectrum for the case where there are no hierarchies among the parameters

in the scalar potential. All parameters have intermediate values in the arbitrarily chosen O(1)

range.
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Figure 4: Scalar mass spectrum for the case where there is a small hierarchy between λ4 and the

other parameters in the scalar potential. All parameters are in the O(1) range.

There is an interesting case where we allow for a small hierarchy among some of the

parameters, namely if we let λ4 be larger than the other parameters, while still all of them

in the O(1) range, then the situation is that of figure 4.

Figures 5 and 6 show the cases where there is a hierarchy among λ1 and the other
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Figure 5: Scalar mass spectrum for the case where there is a hierarchy between λ1 and the other

parameters in the scalar potential. λ1 lies in the lower part of the O(1) range. This scenario

satisfies all bounds for sin θH > 0.8, except for LEP when sin θH < 0.8 and can be used to analyze

the possibility described in [11] of an undetected light scalar at LEP.
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Figure 6: Scalar mass spectrum for the case where there is a hierarchy between λ1 and the other

parameters in the scalar potential. λ1 lies in the lower range of the O(1) range. This scenario

satisfies all bounds except for LEP and can be used to analyze the possibility described in [11] of

an undetected light scalar at LEP.

parameters. Here λ1, which is related to the doublet fields exclusively, is taken to be

of O(1) while the rest are suppressed by a factor of 10. Again, this factor is arbitrary.
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Figure 5 presents the situation where λ1 lies in the lower side of the O(1) range and it

can be seen that the spectrum satisfies all bounds for sin θH > 0.6, except for the LEP

bound. Figure 6 shows the result for λ1 in the upper part of the O(1) range and in this

case the spectrum satisfies the bounds (except for LEP) for all the sin θH range. It is

interesting that these scenarios could fall into the category described in [11] where there

is a light scalar unobserved by LEP. One way to study this possibility is to consider Higgs

production in e+e− collisions, i.e. through the Higgs-strahlung processes e+e− → H0
i Z

0,

whose cross sections can be expressed in terms of the SM Higgs boson (herein denoted by

φ0
SM ) production formula and the Higgs-Z0Z0 coupling as follows [11]:

σH0
i Z = R2

H0
i Z0Z0σ

SM
H0

i Z , (4.7)

with

R2
H0

i Z0Z0 =
g2
H0

i Z0Z0

g2
φ0

SM
Z0Z0

, (4.8)

where g2
H0

i Z0Z0 is the H0
i Z

0Z0 coupling in our model and g2
φ0

SM
Z0Z0 is the φ0

SMZ
0Z0 SM-

coupling with the relation

3
∑

i=1

g2
H0

i Z0Z0 = g2
φ0

SM
Z0Z0 . (4.9)

In particular, for the lightest scalar in the present model, R2
h0Z0Z0 is given by:

R2
h0Z0Z0 =

(

− cHsα +
2
√

2√
3
sHcα

)2

, (4.10)

where α is the mixing angle that relates the physical states h0, H0 to H0
1 , H

′0
1 :

H0
1 = cαH

0 − sαh
0 , (4.11)

H
′0
1 = sαH

0 + cαh
0 , (4.12)

tan 2α =
2m2

12

m2
11 −m2

12

, (4.13)

where mij denote the mass-squared matrix elements of the two scalars H0
1 , H0′

1 given by:

M2
H0

1
,H0′

1

=

(

8c2H(λ1 + λ3) 2
√

6sHcHλ3

2
√

6sHcHλ3 3s2H(λ2 + λ3)

)

. (4.14)

It is also useful to express the Majorana coupling of νR to the physical states H0 and h0,

namely

gH0νRνR
= i

gM sασ2 ⊗ (1 + γ5)

2
√

3
,

gh0νRνR
= i

gM cασ2 ⊗ (1 + γ5)

2
√

3
. (4.15)
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a) 0.34 < sH < 0.87 45 GeV <mh0 <116 GeV
0.3<R2

h0Z0Z0
for mh0 <100 GeV

1.5<R2

h0Z0Z0
for mh0 <116 GeV

Excluded by R2

h0Z0Z0

b) 0.34<sH <0.89 44 GeV <mh0 <116 GeV 1.5<R2

h0Z0Z0
Excluded by R2

h0Z0Z0

c) 0.34 < sH < 0.7 55 GeV <m
H
±
1

<110 GeV
0.19<R2

h0Z0Z0
for mh0 <110 GeV

R2

h0Z0Z0
<0.29 for mh0 ∼110 GeV

Allowed by R2

h0Z0Z0

only when mh0 ∼110 GeV

Table 2: Analysis of R2
h0Z0Z0 at tree level consistent with LEP. We consider experimental limits

allowed by LEP2 for charged and neutral Higgs bosons for the cases a) λ1 = 1.5, λ2 = 0.05 and

λ3 = 0.05, b)λ1 = 0.5, λ2 = 0.05 and λ3 = 0.05, c)λ1 = 0.1, λ2 = 0.1 and λ3 = 0.1.

The bounds on the neutral Higgs bosons masses are then expressed in terms of the

LEP2 bounds for R2
H0

i Z0Z0 [11]. We find that large regions of the parameter space of our

model are excluded as can be seen in Table 2. By “parameter space of our model” we mean

the region in which the mass of the lightest scalar is situated below the LEP bound. We

have defined as “marginal regions” those cases that almost pass the LEP2 bounds on the

neutral Higgs mass, i.e., when mh0 ∼ 110GeV and/or when R2
h0Z0Z0 is almost consistent

with the experimental bounds (see case c in Table 2). Our motivation for this definition is

that once the complete calculation of the one-loop radiative corrections to the mass of the

neutral Higgs boson is considered, one could expect an enhancement for its mass, thereby

allowing it to satisfy the experimental bounds. It is known that the inclusion of radiative

corrections can alter significantly the (lightest) neutral CP-even Higgs mass, for example

in supersymmetric models as MSSM [12] and MSSM+Higgs triplets[13].

4.2 Signals from the Higgs triplet neutral scalars

Interesting and unusual signatures come from the presence of mirror fermions. In particular,

we are interested in signals that show lepton number violation such as like-sign dilepton

events. The Lagrangian in Eq. (1.3) shows the coupling of mirror fermions with the Y = 2

triplet Higgs field. There is no coupling with the SM leptons which is forbidden either by

the U(1)M symmetry of the model [3] or by embedding it in a Pati-Salam type of quark-

lepton unification [7]. This coupling which is obviously lepton-number violating should

show up in the decays of triplet scalars in an interesting way.

One can have the following decays: H0, h0,H0
5 ,H

0
3 → νR νR. The couplings of νR

to H0, h0 are given in Eq. (4.15) and to H0
5 ,H

0
3 in Eq. (3.7). Depending on the mass

difference between νR’s and the charged mirror leptons eMR ’s, the subsequent decay of each

νR is νR → eMR +W+ → eL +φS +W+, where eMR could be real or virtual (as well as W’s).

Since νR is its own antiparticle one eventually has Hneutral → e∓L +e∓L +φS+φS +W±+W±,

where Hneutral = H0, h0,H0
5 ,H

0
3 . This is an example of a lepton-number violating like-sign

dilepton decay mode of the neutral scalars. The decay width has a form which is identical

to Eq. (4.16) except for a factor of 1/2 due to the Majorana nature of νR.

4.3 Signals from χ++ decays

The presence of a doubly charged Higgs in this model provides with interesting phenomenol-

ogy. Furthermore, the phenomenology of this model is specific and different from that of

the general two triplets model due to the following observations:
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• Due to the U(1)M symmetry of the model or its embedding in a Pati-Salam type of

quark-lepton unification, the term proportional to lTl σ2τ2χ̃lL is not allowed and thus

the decay Γ(χ++ → l+l+) is not present.

• The presence of mirror fermions and φS allows for the decays Γ(χ++ → lMi lMj ) and

Γ(χ++ → l φS lM ) or even Γ(χ++ → llφSφS).

We now present the expressions for the relevant χ++ decays. If χ++ is very heavy, it

can have the following decays:

• χ++ → lM lM

Γ(χ++ → lMi lMj ) =
g2
M mχ

16π(1 + δij)

(

1 − 4r2M
)1/2

, (4.16)

where rM = mM
l /mχ and then

Γ(lM → l φr
S) =

g2
sl m

M
l

64π

(

1 − m2
S

(mM
l )2

) ∣

∣

∣

∣

1 − m2
S

(mM
l )2

∣

∣

∣

∣

. (4.17)

• χ++ →W+W+

Γ(χ++ →W+W+) =
g4v2

M

32πr4Wmχ

(

1 − 4r2W
)1/2 (

1 − 4r2W + 12r4W
)

, (4.18)

where rW ≡ mW /mχ, and vM = 〈χ0〉.

• χ++ → H+
3 W

+

Γ(χ++ → H+
3 W

+) =
c2H g2 mH3

32π x3 y2
F1(x, y)F2(x, y) , (4.19)

where x ≡ mχ/mH3
, y ≡ mW /mH3

, and

F1(x, y) = 1 + x4 − 3y2 + 2y4 − 2x2(1 + y2),

F2(x, y) = (x4 + (y2 − 1)2 − 2x2(1 + y2))1/2.

For intermediate χ++ masses we can have the following three body decays (most

relevant ones):

• χ++ →W+∗W+ →W+ l+ νl

Γ(χ++ → l+ ν W+) =
g4s2Hmχ

12(8π)3 r4W

(

1 − 4r2W + 24r4W
)

. (4.20)

• χ++ →W+∗H+
3 → H+

3 l+ νl

Γ(χ++ → l+ ν H+
3 ) =

g2c2Hmχ

12(8π)3 r4W

(

1 − 12r2H3

)

, (4.21)

with rH3 = mH3/mχ.
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Figure 7: Branching ratios for χ++ as a function of its mass, for three different values of sin θH ,

and for a small mlM .

• χ++ → l∗M lM → lM l+ φS

Γ(χ++ → l+ φS lM ) =
3g2

Mg2
slmχ

(16π)3 r4M

(

1 + 4r2M − 3r2S
)

, (4.22)

where rS = mS/mχ.

4.3.1 Branching ratios

Using the previous expressions we can compute the branching ratios. In the following

analysis we have made the following assumptions:

• gM and gsl are proportional to the identity matrix and so, in each of the expressions

above, gM and gsl represent numbers.

• The model requires g2
sl/gM ∼ O(1). We have chosen numbers of O(1) for both

couplings and for the numerical results presented below they have been set to gM =

0.7 and gsl = 0.8.

Given these assumptions we compute the following branching ratios: B(χ++ → l+M l
+
M ),

B(χ++ → W+W+), B(χ++ → H+
3 W

+), B(χ++ → l+νW+) and B(χ++ → l+φSl
+
M ). Note

that from Eq. (4.21) we could compute the corresponding branching ratio, however in order

to satisfy the unitarity condition in Eq. (4.4) this decay cannot take place in the model.

Figure 7 shows the branching ratios for three different values of sin θH and for small

values of the mirror fermions masses (taken to be degenerate) mlM = 50GeV. We can

see that the dominant one always corresponds to B(χ++ → lM lM ), while the relative

dominance of the other channels depends on sin θH .
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Figure 8: Same as before but with a heavier mlM .

Similar results are obtained for larger mlM as can be seen in figure 8 where we show

the branching ratios for mlM = 100GeV.

5. Conclusions

We argue that the study of models with extended scalar sectors involving Higgs triplets

is well motivated. We study the phenomenology of a model that, using Higgs triplets,

can relate both EWSB and neutrino mass generation using an electroweak scale seesaw

mechanism. This can in principle make the seesaw mechanism testable at colliders. The

model offers a rich scalar phenomenology involving mirror fermions, a single scalar and the

usual charged Higgs processes of extended Higgs models, in particular the doubly charged

Higgs. We have studied these processes in detail and have computed the branching ratios for

the doubly charged Higgs. We find that for all the allowed parameter space, the dominant

decay is to the mirror fermions. The existence of this decay would provide a clean signature

in favor of this scenario.
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